Doubly robust estimation in missing data and causal inference models.

نویسندگان

  • Heejung Bang
  • James M Robins
چکیده

The goal of this article is to construct doubly robust (DR) estimators in ignorable missing data and causal inference models. In a missing data model, an estimator is DR if it remains consistent when either (but not necessarily both) a model for the missingness mechanism or a model for the distribution of the complete data is correctly specified. Because with observational data one can never be sure that either a missingness model or a complete data model is correct, perhaps the best that can be hoped for is to find a DR estimator. DR estimators, in contrast to standard likelihood-based or (nonaugmented) inverse probability-weighted estimators, give the analyst two chances, instead of only one, to make a valid inference. In a causal inference model, an estimator is DR if it remains consistent when either a model for the treatment assignment mechanism or a model for the distribution of the counterfactual data is correctly specified. Because with observational data one can never be sure that a model for the treatment assignment mechanism or a model for the counterfactual data is correct, inference based on DR estimators should improve upon previous approaches. Indeed, we present the results of simulation studies which demonstrate that the finite sample performance of DR estimators is as impressive as theory would predict. The proposed method is applied to a cardiovascular clinical trial.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounded , efficient and doubly robust estimation with inverse weighting

Consider estimating the mean of an outcome in the presence of missing data or estimating population average treatment effects in causal inference. A doubly robust estimator remains consistent if an outcome regression model or a propensity score model is correctly specified. We build on a previous nonparametric likelihood approach and propose new doubly robust estimators, which have desirable pr...

متن کامل

Bounded, Efficient, and Doubly Robust Estimation with Inverse Weighting

Consider the problem of estimating the mean of an outcome in the presence of missing data or estimating population average treatment effects in causal inference. A doubly robust estimator remains consistent if an outcome regression model or a propensity score model is correctly specified. We build on the nonparametric likelihood approach of Tan and propose new doubly robust estimators. These es...

متن کامل

Cp criterion for semiparametric approach in causal inference

For marginal structural models, which recently play an important role in causal inference, we consider a model selection problem in the framework of a semiparametric approach using inverse-probability-weighted estimation or doubly robust estimation. In this framework, the modeling target is a potential outcome which may be a missing value, and so we cannot apply the AIC nor its extended version...

متن کامل

Doubly robust estimation and causal inference in longitudinal studies with dropout and truncation by death: Supplementary material

Doubly robust estimation and causal inference in longitudinal studies with dropout and truncation by death: Supplementary material MICHELLE SHARDELL∗,1, GREGORY E HICKS, LUIGI FERRUCCI Department of Epidemiology and Public Health, University of Maryland 660 West Redwood Street Baltimore, Maryland 21201, U.S.A. Department of Physical Therapy, University of Delaware 303 McKinly Lab Newark, Delawa...

متن کامل

Discrete Choice Models for Nonmonotone Nonignorable Missing Data: Identification and Inference

Nonmonotone missing data arise routinely in empirical studies of social and health sciences, and when ignored, can induce selection bias and loss of efficiency. In practice, it is common to account for nonresponse under a missing-at-random assumption which although convenient, is rarely appropriate when nonresponse is nonmonotone. Likelihood and Bayesian missing data methodologies often require...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biometrics

دوره 61 4  شماره 

صفحات  -

تاریخ انتشار 2005